From: WSHoge <> Date: Sat, 28 Jan 2023 16:33:26 +0000 (-0500) Subject: DPG demo version from 2019-08-20 X-Git-Url: https://sigprocexperts.com/demo_code/dpg/commitdiff_plain/82df107ae0fe7e8430852935a91203370d249136 DPG demo version from 2019-08-20 --- 82df107ae0fe7e8430852935a91203370d249136 diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..0b312ce --- /dev/null +++ b/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2023, W. Scott Hoge + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/ReadMe.md b/ReadMe.md new file mode 100644 index 0000000..34f6fc5 --- /dev/null +++ b/ReadMe.md @@ -0,0 +1,49 @@ + +# Dual-Polarity GRAPPA (DPG) demo + +This collection of Matlab code and data presents one implementation of the method described in +"Dual-Polarity GRAPPA for simultaneous reconstruction and ghost correction of EPI data." +_Magn Reson Med_. 76(1):32-44, Jul 2016. +http://dx.doi.org/10.1002/mrm.25839 + + +## Data source + +EPI gradient-echo BOLD data + +- 3T Siemens Trio +- 32 Channel Head coil +- TR 3sec +- TE 30msec +- Echo Spacing 770usec +- 2.0mm isotropic resolution + +- 96x60 matrix size +- 192x120 (mm) FOV +- 32 slices, 2mm thick + + +collected on 2015-05-18, data file MID902 + +## Demo Filelist: + + data/dpg_acs1.nd ACS data, with the first readout acquired using RO+ + data/dpg_acs2.nd ACS data, with the first readout acquired using RO- + data/dpg_C.nd The PLACE ACS image, formed from a combination of dpg_acs1 and dpg_acs2 + + data/dpg_k.nd one frame of R=2 EPI data + data/dpg_k_pcref.nd navigator data for dpg_k, to perform traditional Nyquist ghost correction + data/y.nd NGC coefficients, derived from dpg_k_pcref and used with phzapply.m + data/y_acs2.nd NGC coefficients, derived from A and B and used with phzapply.m + + dpg_cal.m the DPG calibration code + dpg_recon.m the DPG reconstruction code + phzshift.m calculates the coordinate shift between two k-space data sets using SIEPCM + phzapply.m a script to apply standard Nyquist ghost correction coefficients + fif.m a 2D FFT macro script + ifi.m a 2D FFT macro script + readnd.m script to read the .nd data files + + runthis.m the main demo script + runthis2.m an alternate demo script (w/o GESTE/PLACE acs data) + diff --git a/data/dpg_C.nd b/data/dpg_C.nd new file mode 100644 index 0000000..8f964d7 Binary files /dev/null and b/data/dpg_C.nd differ diff --git a/data/dpg_acs1.nd b/data/dpg_acs1.nd new file mode 100644 index 0000000..4260119 Binary files /dev/null and b/data/dpg_acs1.nd differ diff --git a/data/dpg_acs2.nd b/data/dpg_acs2.nd new file mode 100644 index 0000000..53bf7ec Binary files /dev/null and b/data/dpg_acs2.nd differ diff --git a/data/dpg_k.nd b/data/dpg_k.nd new file mode 100644 index 0000000..ef32bd1 Binary files /dev/null and b/data/dpg_k.nd differ diff --git a/data/dpg_k_pcref.nd b/data/dpg_k_pcref.nd new file mode 100644 index 0000000..2169b31 Binary files /dev/null and b/data/dpg_k_pcref.nd differ diff --git a/data/y.nd b/data/y.nd new file mode 100644 index 0000000..cc357ea Binary files /dev/null and b/data/y.nd differ diff --git a/data/y_acs2.nd b/data/y_acs2.nd new file mode 100644 index 0000000..1ea5158 Binary files /dev/null and b/data/y_acs2.nd differ diff --git a/dpg_cal.m b/dpg_cal.m new file mode 100644 index 0000000..7d3597b --- /dev/null +++ b/dpg_cal.m @@ -0,0 +1,479 @@ +function [F,I,N] = dpg_cal( varargin ); + +% [F,I,N ] = dpg_cal( Wk, Sk, Y, [opt args]); +% +% opt args: +% 'v', {0,1} - verbosity off/on +% 'kernel', string - grappa kernel size, x by y. e.g. '2x5', '4x1' +% 'N', (xy)-by-num_patterns-L matrix - grappa reconstruction parameters +% 'acs', array of indices - index locations to use for ACS lines +% +% This implementation is derived from +% "Generalized autocalibrating partially parallel acquisitions" +% by M. A. Griswold, P. M. Jakob, et. al.. +% Mag. Reson. Med, 47(6):1202-1210, Jun 2002 +% + +% +% Copyright 2004-2016 W. Scott Hoge (wsh032580 at proton dot me) +% +% Licensed under the terms of the MIT License +% (https://opensource.org/licenses/MIT) + +% +% GRAPPA: data from all coils used to patch data in one coil +% +% coil 1 o * o * a * o * +% coil 2 o * o * a * o * +% coil 3 o * o * a * o * +% coil 4 o * o * x * o * +% +% *: acquired line, o: unacquired line, a: auto-callibration line +% x: reconstructed line +% +% S_j (k_y - m\Delta k_y ) = \sum_{l=1}^L \sum_{b=0}^{N_b-1} +% n(j,b,l,m) S_l(k_y - b A \Delta k_y) +% + +Wk = varargin{1}; +kin = varargin{2}; +Y = varargin{3}; + +acs = []; N = []; verbose=0; kernel = '2x5'; dks = []; prnt = 0; +eta = 1.0; +chi = 0.0001; + +vararg = varargin(4:end); +for cnt=1:2:length(vararg), + if strcmp( vararg{cnt}, 'v' ), + verbose = cell2mat(vararg(cnt+1)); + elseif strcmp( vararg{cnt}, 'N' ), + N = vararg{cnt+1}; + elseif strcmp( vararg{cnt}, 'dks' ), + dks = vararg{cnt+1}; + elseif strcmp( vararg{cnt}, 'kernel' ), + kernel = vararg{cnt+1}; + elseif strcmp( vararg{cnt}, 'acs' ), + acs = vararg{cnt+1}; + elseif (strcmp( vararg{cnt}, 'report' ) || strcmp( vararg{cnt}, 'r' )), + prnt = vararg{cnt+1}; + end; +end; + +if length(size(Wk)) == 3, + [Wm,Wn,ncoils] = size(Wk); +else, + Wm = Wk(1); Wn = Wk(2); ncoils = Wk(3); +end; + + +%% zero-pad the k-space data +Sk = zeros( Wm, Wn, ncoils ); +if iscell(kin) + dualks = 1; + s = kin{3}; +else + dualks = 0; + s = kin; clear kin; +end; +Sk(Y,:,:) = s; + +rptupd(prnt,['* ' mfilename ': kernel size = ' kernel '\n']); + +d = diff(Y(:)); +if ( isempty(acs) ), + prfl = max( sum(abs( Sk(:,:,:)),3).' ); + + if length( d == 1) == 1, + acs = find( prfl == max(prfl(Y(find(d==1)))) ); + else + acs = Y([ min(find(d==1)); find( d == 1)+1 ]); + end; + rptupd(prnt,['* ' mfilename ': acs =']); + rptupd(prnt,sprintf(' %d', acs) ); + rptupd(prnt,'\n'); +end; + +if ( isempty(dks) ), + %% determine which delta-k's to repair. + dks = []; + for cnt=max(d):-1:2, + if (sum( cnt == d ) > 0), + dks = [ cnt; dks ]; + end; + end; +end; + +% set the kernel spacings based on 'kernel' string +nky = str2double(kernel(1)); +nkx = str2double(kernel(3:end)); % should be odd + +indx3 = ceil((0-nkx)/2) -1 + (1:nkx); % [-2:2]; + +pattern = {}; + +if ~isempty(N), + for cnt=1:length(N) + pattern{cnt} = N(cnt).pattern; + end; +end; + +if isempty(pattern) +%% foreach dk spacing +for cnt=1:length(dks), + + if ( dks(cnt) == 1 ) + % for no acceleration, just specify the pattern + tmppat = repmat('*',[1 nky]); + for patcnt = 1:nky, + pattern{length(pattern)+1} = tmppat; + pattern{length(pattern)}(patcnt) = '<'; + end; + + for patcnt = 1:nky, + pattern{length(pattern)+1} = tmppat; + pattern{length(pattern)}(patcnt) = '>'; + end; + + continue; + end; + + tmp = [ repmat([ '*' repmat('o',1,dks(cnt)-1) ],1,nky-1) '*' ]; + z2 = strfind(tmp,'o'); + if isempty(z2), + % pad with zeros, if the kernel is 1-by-N + tmp = [ 'o' tmp 'o' ]; + z2 = strfind(tmp,'o'); + end; + [tmp2,indx] = sort( abs(z2 - z2( floor(median(1:length(z2))) )) ); + + olength = length(pattern); + if (dualks == 1) + % for dual-kernels, we want to genereate coefficients for the sampled + % lines as well. + npat = 2*length(tmp); + else + npat = length(z2); + end + for cnt2 = 1:npat, % (dks(cnt)-1), % + + if (dualks == 0 ) + cnt3 = indx(cnt2); + pattern{length(pattern)+1} = tmp; + pattern{length(pattern)}(z2(cnt3)) = 'x'; + else + cnt3 = mod( cnt2-1, length(tmp) ) + 1; + pattern{length(pattern)+1} = tmp; + if ( cnt2 <= npat/2 ) + pattern{length(pattern)}( cnt3 ) = '<'; + else + pattern{length(pattern)}( cnt3 ) = '>'; + end; + end; + + end; + +end; +end; + + +% find the recon patterns we can use +plist = cell(length(pattern),1); + +for cnt = 1:length(pattern), + v = extrapolate_pattern(pattern{cnt},nky); + + % if cnt == 14, keyboard; end; + + for cnt2 = 1:length(acs); + %% check if the GRAPPA pattern... + indx = acs(cnt2) + v; + + %% can be accomodated by the sampling pattern + tmp = find( Y(:)*ones(1,length(indx)) == ones(length(Y),1)*indx ); + if ( length(tmp) == length(indx) ), + plist{cnt} = [ plist{cnt} acs(cnt2) ]; + end; + end; +end; + +rptupd(prnt,['* ' mfilename ': sampling patterns in use = \n' ]); +for cnt1=1:length(pattern); + rptupd(prnt,sprintf(' %s: %d acs lines =', pattern{cnt1}, length(plist{cnt1})) ); + rptupd(prnt,sprintf(' %3d', plist{cnt1}) ); + % for cnt2 = 1:length( plist{cnt1} ), + % rptupd(prnt,(' %s', pattern{plist{cnt1}} ); + % % v = extrapolate_pattern(pattern{plist{cnt1}(cnt2)},nky); + % % norm(vec(Sk( acs(cnt1)+v, :, : ))); + % end; + rptupd(prnt,'\n'); +end; +if (length(plist) == 0), + error(['sorry, acquisition pattern is incompatible with available GRAPPA recon patterns']); +end; + +st = clock; % tic; + +if verbose, rptupd(prnt,'\n'); end; + +mss = zeros( size(Sk,1), 1 ); % set the missing lines index vector +mss(Y) = 1; + +if isempty(N), + % N = zeros( length(indx3)*nky*size(s,3),length(pattern),size(s,3)); + + rptupd(prnt,'calc recon param\n'); + for cnt = 1:length(pattern), + v = extrapolate_pattern(pattern{cnt},nky); + + %% and for each pattern ... + %% A2 = []; b2 = []; + + %% A is data from the expanded input data matrix. + %% size(A) = [ kxnum * nacs, ncoils * nky * nkx ] + %% + %% in the matlab (and c-code) structure is: + %% for each element of indx3 + %% coil 1 | coil 2 | coil 3 | ... + %% -3 -1 1 3 | -3 -1 1 3 | -3 -1 1 3 | ... + %% o o o o | o o o o | o o o o | ... + %% ^ + %% ACS(1) xres| + %% v + %% ^ + %% ACS(2) xres| + %% v + %% ^ + %% ACS(3) xres| + %% v + %% + %% the older version of matlab code sorted the columns by + %% + %% | c1 c2 c3 ... | c1 c2 c3 ... | c1 c2 c3 ... | c1 c2 c3 ... + %% | -3 -3 -3 ... | -1 -1 -1 ... | 1 1 1 ... | 3 3 3 ... + %% | o o o ... | o o o ... | o o o ... | o o o ... + %% + %% the order is immaterial, as long at it is consistent... + %% UPDATE (12 Jan 2011): the order does matter for GROG, so we have + %% now changed it here so that the c-code and matlab code match. + %% + %% The old way to switch between the two was: + %% Accode(:, permute( reshape(1:size(Accode,2),YKS,Ncoils,XKS), [3 2 1]) ) == Amatlab + %% Accode = Amatlab(:, permute( reshape(1:size(Accode,2),XKS,Ncoils,YKS), [3 2 1])) + A = zeros( length(plist{cnt})*size(s,2), length(indx3)*nky*size(s,3) ); + + rptupd(prnt,sprintf('%3d %s: ', cnt, pattern{cnt})); + + % v = extrapolate_pattern(pattern{cnt}); + N(length(N)+1).pattern = pattern{cnt}; + + n = zeros( nky*size(s,3)*length(indx3),size(s,3)); + + for cnt2 = 1:length(plist{cnt}), + %% and ACS line ... + + %% if the sampling pattern accomodates the GRAPPA pattern... + indx = plist{cnt}(cnt2) + v; % feedforward indices + % indx2 = plist{cnt}(cnt2) + f; % feedback indices + + %% determine the k-space filling coefficients + for cnt3=1:length(indx3), + y0 = mod( indx3(cnt3) + [1:size(Sk,2)] , size(Sk,2) ); + y0( y0 == 0 ) = size(Sk,2); + + % generate a hybrid source matrix + if (dualks) + tmpSksub = zeros( size( Sk(indx,y0,:) ) ); + if ( sum(pattern{cnt}=='<') ), + tmpSksub( 1:2:length(indx), :, : ) = kin{1}( indx(1:2:end),y0,: ); + tmpSksub( 2:2:length(indx), :, : ) = kin{2}( indx(2:2:end),y0,: ); +% tmpSksub( (v < 0), :, : ) = kin{2}( indx( (v < 0) ),y0,: ); +% tmpSksub( (v >= 0), :, : ) = kin{3}( indx( (v >= 0) ),y0,: ); + else + tmpSksub( 1:2:length(indx), :, : ) = kin{2}( indx(1:2:end),y0,: ); + tmpSksub( 2:2:length(indx), :, : ) = kin{1}( indx(2:2:end),y0,: ); +% tmpSksub( (v >= 0), :, : ) = kin{2}( indx( (v >= 0) ),y0,: ); +% tmpSksub( (v < 0), :, : ) = kin{3}( indx( (v < 0) ),y0,: ); + end + else + tmpSksub = Sk(indx,y0,:); + end; + % A( size(s,2)*(cnt2-1) + (1:size(s,2)), cnt3:length(indx3):size(A,2) ) = ... + A( size(s,2)*(cnt2-1) + (1:size(s,2)), (cnt3-1)*nky*ncoils + (1:nky*ncoils) ) = ... + reshape( permute( tmpSksub, [ 2 1 3 ]), size(Sk,2), size(Sk,3)*length(indx) ); + + end; + %% for an N-by-1 kernel, these next lines are enough... + % A2 = [ A2; ... + % reshape( permute(squeeze( Sk(indx,:,:) ),[ 2 3 1 ]), ... + % size(s,2), size(s,3)*length(indx) ) + % ]; + % + % b2 = [b2; squeeze( Sk( plist{cnt}(cnt2), :, l ) ).' ]; + end; + + % normalize, following to Algo 4.2 of M. Schneider, "GPGPU for Accelerated GRAPPA Autocalibration in + % Magnetic Resonance Imaging," Masters Thesis, U of Erlangen, Apr 2008 + % A_bak = A; + p_src = sum(abs(A),2).^(-eta/2); % compute the power in each line of the linsys + A = tmult(A,diag(p_src),1); % normalize by the power in each linsys line + + % Apinv = pinv(A); + % AA = A'*A; + AA = [A ]'*[A ]; + At = [A ]'; + clear b2; + for l=1:size(Sk,3), + rptupd(prnt,'.'); + % A is the same for each coil ... + b = vec( squeeze(Sk( plist{cnt}, :, l )).' ); % for dual-kernel, this defaults + % to the target data + + b = b.*p_src(:); % normalize by the power in each linsys line + + b2(:,l) = b; + n(:,l) = A \ b; + + if (verbose>2), pltcmplx( At'*n(:,l), b ); keyboard; end; + end; + b1 = b2; + N(length(N)).n = n; + + rptupd(prnt,'\n'); + end; +end; + +rptupd(prnt,'recon missing lines\n'); +%% now go recon the missing lines of k-space: + +if (verbose); keyboard; end; + +kypts = 1:length(mss); +kypts( 1:floor(length(mss)/2) ) = kypts( (floor(length(mss)/2)):-1:1 ); + +linerpt = repmat(' ',1,length(mss)); + +for kycnt=1:length(mss), + cnt2 = kypts(kycnt); + + if verbose, rptupd(prnt,sprintf(' line %3d, from lines ',cnt2)); end; + + if ( find( Y == cnt2) ); + % rptupd(prnt,'*'); + linerpt(cnt2) = '*'; + if verbose, rptupd(prnt,'\n'); end; + continue; + end; + + tmp = []; + %% determine which recon pattern we can use: + for cnt4 = 1:length(pattern), + v = extrapolate_pattern(pattern{cnt4},nky); + + if ( (kycnt < length(mss)/2) && sum(find( pattern{cnt4} == '-')) ), continue, end; + if ( (kycnt > length(mss)/2) && sum(find( pattern{cnt4} == '+')) ), continue, end; + + indx = cnt2 + v; + % indx2 = cnt2 + f; + % tmp = find( Y(:)*ones(1,length(indx)) == ones(length(Y),1)*indx ); + % if ( ... % ( (min(indx) > 1) & (max(indx) < size(Sk,1)) ) & ... + % ( length(tmp) == length(indx) ) ), + % break; % jump out of the loop + % end; + if ( indx(1) < 1) | (indx(end) > size(Sk,1)); continue; end; + + tmp = (mss( indx ) == ones(length(indx),1)); + if ( sum(tmp) == length(tmp) ), + break; + end; + + end; + + if ( ( (min(indx) < 1) | (max(indx) > size(Sk,1)) ) | ... + ( sum(tmp) ~= length(indx) ) ), + % + linerpt(cnt2) = 'o'; + if verbose, rptupd(prnt,'o'); rptupd(prnt,'\n'); end; + continue; + end; + + %% recon k-space line based on that pattern: + rsz = size(Sk,2); + A = zeros( rsz, length(indx3)*length(v)*size(s,3) ); + B = []; % zeros( rsz, length(indx3)*length(f)*size(s,3) ); + + for cnt3=1:length(indx3), + y0 = mod( indx3(cnt3) + [(size(Sk,2)-rsz)/2+(1:rsz)] , size(Sk,2) ); + y0( y0 == 0 ) = size(Sk,2); + + A( (1:rsz), (cnt3-1)*nky*ncoils + (1:nky*ncoils) ) = ... + reshape( permute( Sk(indx,y0,:), [ 2 1 3 ]), ... + rsz, size(Sk,3)*length(indx) ); + end; + + if (verbose), % ( sum(Sk(Y(mss(cnt2))+1,:,l)) ~= 0 ); + rptupd(prnt,sprintf(' %3d',[ indx(:) ])); + rptupd(prnt,sprintf(' (pattern: %s)', pattern{cnt4}) ); + rptupd(prnt,'\n'); + if (verbose>1), + figure(1); imagesc( log10(abs(Sk(:,:,1)) + 1e-1) ); pause(0.5); + keyboard; + end; + end; + linerpt(cnt2) = 'x'; + + for cnt3=1:length(N), + if strcmp( N(cnt3).pattern, pattern{cnt4} ), + break; % jump out of the loop + end; + end; + n = N(cnt3).n; + + for l=1:size(Sk,3), + % for each coil ... + + % if cnt2==109, keyboard; end; + % rptupd(prnt,(' line %3d, pattern %3d\n', cnt2, plist(cnt3) ); + Sk( cnt2, :, l ) = [A B] * n(:,l); + end; + + if (verbose>1), keyboard; end; +end; +rptupd(prnt,linerpt); +rptupd(prnt,' \n'); + +% Sk(1:2:size(Sk,1),:,:) = -Sk(1:2:size(Sk,1),:,:); +% Sk(:,1:2:size(Sk,2),:) = -Sk(:,1:2:size(Sk,2),:); + +F = Sk; +I = sqrt( sum(abs(ifft2(Sk)).^2,3) ); +I = I./(prod(size(I))); +mask = 0; + +rpttime = etime(clock,st); +rptupd(prnt,sprintf(' GRAPPA recon time: %g (avg per kernel: %g)\n', ... + rpttime, rpttime/length(pattern)) ); + +return; + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +function rptupd( prnt, str ) + +if (prnt) + fprintf( str ); +end; + +return; + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +function v = extrapolate_pattern(p,YKS) + +r = find( (p == 'x') | (p == '<') | (p == '>') ); +v = find( (p == '*') | (p == '<') | (p == '>') ) - r; + +if length(v)>YKS, + v = v( find( v~= 0 ) ); +end; +return; + + diff --git a/dpg_recon.m b/dpg_recon.m new file mode 100644 index 0000000..2f3757a --- /dev/null +++ b/dpg_recon.m @@ -0,0 +1,147 @@ +function [Sk,Sk2] = dpg_recon( Fin, N, dk, nky ); +% reconstruct measured EPI data using Dual-Polarity GRAPPA kernels + +% +% Copyright 2004-2016 W. Scott Hoge (wsh032580 at proton dot me) +% +% Licensed under the terms of the MIT License +% (https://opensource.org/licenses/MIT) + +Sk = zeros(size(Fin{1})); +if nargout > 1, + Sk2 = zeros(size(Fin{1})); +end; +sz = size(Sk); + + +if nargin < 4, + nky = 2; +end; +if isstr(nky), + kernel = nky; + nky = str2num(kernel(1)); +end; + +if ( ~isfield( N, 'n') & isfield( N, 'coef' ) ) + for cnt=1:length(N), + N(cnt).n = N(cnt).coef; + end; +end; + +nkx = size(N(1).n,1) / size(Fin{1},3) / nky; +ncoils = size(Sk,3); + +% fprintf(' ky:%d kx:%d nc:%d\n',nky,nkx,ncoils); +indx3 = ceil((0-nkx)/2) -1 + (1:nkx); % [-2:2]; + +verbose=1; +prnt = 0; + +% for kycnt=2:2*dk:(size(Sk,1)-2*dk), +for kycnt=2:2*dk:(size(Sk,1)), + + % fprintf('---%d ---\n',kycnt); + for patcnt = 1:length(N); % [ 2:length(N)/2 (length(N)/2+(2:length(N)/2)) ]; + + % fprintf(' %d',patcnt) + v = extrapolate_pattern(N(patcnt).pattern,nky); + + if (patcnt <= length(N)/2) + indx = kycnt + (patcnt-1) + v; + else + indx = kycnt + (patcnt-2) + v; + end; + + % fprintf(': '); fprintf(' %d', indx); fprintf('\n'); + if sum(indx>sz(1)); + indx = mod( indx, sz(1) ); + indx( indx==0 ) = sz(1); + end; + % fprintf('# '); fprintf(' %d', indx); fprintf('\n'); + + %% recon k-space line based on that pattern: + A = zeros( size(Sk,2), length(indx3)*length(v)*size(Sk,3) ); + + for cnt3=1:length(indx3), + y0 = mod( indx3(cnt3) + [1:size(Sk,2)] , size(Sk,2) ); + y0( y0 == 0 ) = size(Sk,2); + + tmpSk = zeros([ length(indx) length(y0) size(Sk,3) ]); + + if (patcnt <= length(N)/2) + tmpSk(1:2:end,:,:) = Fin{1}( indx(1:2:end), y0, :); + tmpSk(2:2:end,:,:) = Fin{2}( indx(2:2:end), y0, :); + else + tmpSk(1:2:end,:,:) = Fin{2}( indx(1:2:end), y0, :); + tmpSk(2:2:end,:,:) = Fin{1}( indx(2:2:end), y0, :); + end; + + A( (1:size(Sk,2)), (cnt3-1)*nky*ncoils + (1:nky*ncoils) ) = ... + reshape( permute( tmpSk, [ 2 1 3 ]), ... + size(Sk,2), size(Sk,3)*length(indx) ); + + end; + + if (verbose), % ( sum(Sk(Y(mss(cnt2))+1,:,l)) ~= 0 ); + tmp = kycnt+patcnt; + if (patcnt > length(N)/2); tmp = tmp-1; end; + rptupd(prnt,sprintf(' %3d',[ tmp; indx(:) ])); + rptupd(prnt,sprintf(' (pattern: %s)', N(patcnt).pattern) ); + rptupd(prnt,'\n'); + if (verbose>1), + figure(1); imagesc( log10(abs(Sk(:,:,1)) + 1e-1) ); pause(0.5); + keyboard; + end; + end; + % linerpt(cnt2) = 'x'; + + n = N(patcnt).n; + + for l=1:size(Sk,3), + % for each coil ... + + % if cnt2==109, keyboard; end; + % rptupd(prnt,(' line %3d, pattern %3d\n', cnt2, plist(cnt3) ); + + if (nargout == 1), + tmp = kycnt+(patcnt); + if (patcnt > length(N)/2), tmp = tmp-1; end; + Sk( tmp, :, l ) = [A] * n(:,l); + else + if (patcnt > length(N)/2 ), + Sk2( kycnt+(patcnt-1), :, l ) = [A] * n(:,l); + else + Sk( kycnt+(patcnt), :, l ) = [A] * n(:,l); + end; + end; + end; + + % if (verbose>1), keyboard; end; + end; + +end; + +Sk = Sk(1:sz(1),:,:); + +%% need to fix this above, but for now... +Sk = Sk([2:sz(1) 1],:,:); % rotate the output back 1 kspace line + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +function rptupd( prnt, str ) + +if (prnt) + fprintf( str ); +end; + +return; + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +function v = extrapolate_pattern(p,YKS) + +r = find( (p == 'x') | (p == '<' ) | (p == '>') ); +v = find( (p == '*') | (p == '<' ) | (p == '>') ) - r; + +if length(v)>YKS, + v = v( find( v~= 0 ) ); +end; +return; diff --git a/fif.m b/fif.m new file mode 100644 index 0000000..565b7d8 --- /dev/null +++ b/fif.m @@ -0,0 +1,3 @@ +function a = fif(a) + +a = fftshift(fftshift(ifft2(fftshift(fftshift( a, 1),2)),1),2); diff --git a/ifi.m b/ifi.m new file mode 100644 index 0000000..fc55937 --- /dev/null +++ b/ifi.m @@ -0,0 +1,2 @@ +function a = ifi(a) +a = ifftshift(ifftshift(fft2(ifftshift( ifftshift( a, 1),2)),1),2); diff --git a/phzapply.m b/phzapply.m new file mode 100644 index 0000000..0a7e397 --- /dev/null +++ b/phzapply.m @@ -0,0 +1,50 @@ +function [a_out] = phzapply(a,y); +% [a_out] = phzapply(a,y); +% +% apply the EPI phase shift parameters calcuated by phzshift or +% comp_local_pc to the original k-space data +% + +% +% Copyright 2004-2016 W. Scott Hoge (wsh032580 at proton dot me) +% +% Licensed under the terms of the MIT License +% (https://opensource.org/licenses/MIT) + + +[m n c]=size(a); + +[pm pc ] = size(y); + +A1 = a(1:2:end,:,1:c); +A1a = fftshift(ifft(fftshift(A1,[ 2]),[],2),[ 2]); + +A2 = a(2:2:end,:,1:c); +A2a = fftshift(ifft(fftshift(A2,[ 2]),[],2),[ 2]); + +A1b = zeros(size(A1a)); +A2b = zeros(size(A2a)); +for cnt=1:c, + A1b(:,:,cnt) = A1a(:,:,cnt) * diag( exp( +j*y(1,cnt)/2*((1:size(A2a,2))-size(A2a,2)/2))); + A2b(:,:,cnt) = A2a(:,:,cnt) * diag( exp( -j*y(1,cnt)/2*((1:size(A2a,2))-size(A2a,2)/2))); +end; + +A1c = ifftshift(fft(ifftshift(A1b,[ 2]),[],2),[ 2]); +A2c = ifftshift(fft(ifftshift(A2b,[ 2]),[],2),[ 2]); + +%% keyboard; + +for cnt=1:c, + if ~isreal( y(2,cnt) ), + phz = angle(y(2,cnt)); + else, + phz = y(2,cnt); + end; + A1c(:,:,cnt) = A1c(:,:,cnt) .* exp(-j*phz/2); % angle(y(2,cnt))); + A2c(:,:,cnt) = A2c(:,:,cnt) .* exp(j*phz/2); % angle(y(2,cnt))); +end; + +a_out = zeros(size(a)); +a_out(1:2:end,:,:) = A1c; +a_out(2:2:end,:,:) = A2c; + diff --git a/phzshift.m b/phzshift.m new file mode 100644 index 0000000..fcdce8a --- /dev/null +++ b/phzshift.m @@ -0,0 +1,282 @@ +function varargout = phzshift(a,b,mode,verbose,phz,thrsh); +% [c_out,y_out] = phzshift( a, b, [mode, verbose, phz]); +% +% calculates the coordinate shift between two k-space data sets, a and b. +% Using the Phase Correlation Method, each k-space set is transformed +% to the image domain, the phase difference is calculated and then +% applied to the second set. After this correction, the two data sets +% are added together and output. +% +% inputs can be any number of dimensions, but 'a' and 'b' must be the +% same size +% +% c_out is the combination of (a+b)/2, after phase correction. +% +% y_out contains the estimated phase shift between 'a' and 'b' for +% each frame. +% +% Advanced (optional) options: +% mode - a cell variable containing flags to various settings. +% 'nofft' : The input data is already in the spatial domain +% 'nocombo' : Returns b with the phase correction applied. +% 'nofilter' : use the full data to estimate the phase shift, +% instead of the default setting which uses a +% low-passed filtered version. +% 'center' : center the low-pass filter. +% verbose - set to '1' to show debugging information +% phz~ - if nonempty, use this matrix instead of estimating the phase +% shift. (i.e. y_out from a previous run) +% thrsh - the mask threshold for the svd calculation. range: [0:1] + +% +% Copyright 2004-2016 W. Scott Hoge (wsh032580 at proton dot me) +% +% Licensed under the terms of the MIT License +% (https://opensource.org/licenses/MIT) + + +% 2013/nov/07: jonathan polimeni +% fixed non-integer index, fixed missing conditional for "nofilter" option + +% 2014/sep/25: jonathan polimeni +% replaced phase difference fitting with Local Phase Correction (LPC) method +% based on the methods described in: +% +% Feiweier T. Magnetic Resonance Method and Apparatus to Determine Phase +% Correction Parameters. U.S. Patent No. 8,497,681, Issued 7/30/2013. + + +[m,n,c]=size(a); +c_out = zeros(m,n,c); +if nargout > 1, + y_out = zeros(2,c); +end; + +if nargin < 3, + mode = {''}; +end; + +if nargin < 4, + verbose = 0; +end; + +if nargin < 5, + phz = []; +end; +if ~isempty(phz), + phz = reshape(phz,[2 c]); +end; + +if nargin < 6, + thrsh = 0.2; +end; + + +if ( sum(strcmp(mode,'nofilter')) || sum(strcmp(mode,'nofft')) ), + f1 = 1; f2 = 1; +else + % define a low-pass envelope to apply in kspace + + alph = 20; + + if (alph > m), alph2 = m; else, alph2 = alph; end; + f1 = [ zeros(floor((m-alph2)/2),1); gausswin(alph2); zeros(ceil((m-alph2)/2),1)]; + + if (alph > n), alph2 = n; else, alph2 = alph; end; + f2 = [ zeros(floor((n-alph2)/2),1); gausswin(alph2); zeros(ceil((n-alph2)/2),1)]; + + [tmp,maxx] = max(max(sum(abs(a(:,:,:)),3) )); + [tmp,maxy] = max(max(sum(abs(a(:,:,:)),3)')); + + %%% correct the window coordinates to set ontop of DC (which may be off center) + [ans,j2]=max(f1); + [ans,j3]=max(f2); + + if sum( strcmp(mode,'center') ) + c1 = 0; c2 = 0; + else, + c1 = j2 - maxy; + c2 = j3 - maxx; + end; + % fprintf('c1: %d c2: %d\n',c1,c2); + + if c1>0; + f1 = f1( [ c1:length(f1) 1:(c1-1)]); + elseif c1<0 + f1 = f1( [ length(f1)+(c1:0) 1:(length(f1)+c1-1)]); + end; + + if c2>0; + f2 = f2( [ c2:length(f2) 1:(c2-1)]); + elseif c2<0 + f2 = f2( [ length(f2)+(c2:0) 1:(length(f2)+c2-1)]); + end; + +end; + + +% convert k-space to image-space +if sum(strcmp(mode,'nofft')); + A = a; + B = b; +elseif sum(strcmp(mode,'nofilter')), + A = fftshifthift(ifft2(fftshifthift( reshape(a,[m n c]) ))); + B = fftshifthift(ifft2(fftshifthift( reshape(b,[m n c]) ))); +else, + A = fftshifthift(ifft2(fftshifthift( repmat( (f1*f2'),[1 1 c]).*reshape(a,[m n c]) ))); + B = fftshifthift(ifft2(fftshifthift( repmat( (f1*f2'),[1 1 c]).*reshape(b,[m n c]) ))); +end; + +mask = ( abs(A) > thrsh*max( abs(A(:)) ) ); + +A1 = reshape( permute(A,[2 1 3 4]),[n m*c]).'; +B1 = reshape( permute(B,[2 1 3 4]),[n m*c]).'; +M1 = reshape( permute(mask,[2 1 3 4]),[n m*c]).'; + +if (1), + if isempty(phz) + % calculate the normalized cross-correlation + C = zeros(size(A1)); + % [JRP] why does next definition of "tt" below use a threshold of 0.1*max? + tt = find( abs(A1(:)) > 0.01*max(abs(A1(:))) ); + C(tt) = A1(tt).*conj(B1(tt))./abs(A1(tt).*conj(A1(tt))); + + % extract out the dominant x and y shift vectors + [u d v]=svds(M1.*C,1); + % v = rsvd( mask.*C, 1 ); + + + m2 = sum(M1,1).'; + t2 = find(m2~=0); + + % [JRP] previously the vector "v" was unwrapped after extracting a + % subset defined by vector "t2", but since the subset of samples may be + % non-contiguous the unwrapping could add erroroneous phase + % jumps---better to unwrap the vector first then extract the subset + % afterwards + unv = unwrap(angle(v)); + + % calculate the shift from the slope of the phase. + % here, we are only concerned with shifts along rows + if (verbose), + fprintf(' %d ',t2); + fprintf('\n'); + Atmp = [ ones(length(t2),1) t2(:)-size(B,2) ]; + fprintf('A''*A ='); + fprintf(' %d ', Atmp'*Atmp ); + fprintf('\n'); + fprintf('A''*v2 ='); + fprintf(' %f ', Atmp'*unv(t2) ); + fprintf('\n'); + end; + if (0), + % [JRP] "robustfit" performs better than backslash when outliers are + % present and are not properly masked + %y2 = ( [ ones(length(t2),1) t2(:)-size(B,2) ] ) \ unv(t2); + y2 = robustfit(t2(:)-size(B,2), unv(t2) ); + else, + % [JRP] based on "Local Phase Correction" of Feiweier + dphz = angle(sum(v(2:end) .* conj(v(1:end-1)))); + y2 = [1; dphz]; + end; + if (verbose) + figure; plot( t2-size(B,2), unv(t2), 'bx-', t2-size(B,2), [ ones(length(t2),1) t2(:) ]*y2,'k-.' ); + + fprintf(' x = %f %f \n', y2 ); + keyboard; + end; + else, + y2(2) = phz(1); + end; % if exist('phz') + + % correct the phase of the second data set to match the first + % (i.e. shift the k-space grids to match) + if sum(strcmp(mode,'nofft')); + A = a;% (:,:,cnt); + B = b;% (:,:,cnt); + else, + A = fftshift(ifft2(fftshift( a,1:2 )), 1:2 ); + B = fftshift(ifft2(fftshift( b,1:2 )), 1:2 ); + end; + for cnt=1:c, + if sum(strcmp(mode,'nocombo')) + B(:,:,cnt) = B(:,:,cnt) * diag( exp( -j*y2(2)*( (1:size(B,2))-size(B,2)/2 ) ) ); + else + A(:,:,cnt) = A(:,:,cnt) * diag( exp( +j*y2(2)/2*( (1:size(A,2))-size(A,2)/2 ) ) ); + B(:,:,cnt) = B(:,:,cnt) * diag( exp( -j*y2(2)/2*( (1:size(B,2))-size(B,2)/2 ) ) ); + end; + end; +% m1 = sum(mask,2).'; +% t1 = find(m1~=0); +% % calculate the shift from the slope of the phase. +% % here, we are only concerned with shifts along rows +% y1 = ( [ ones(length(t1),1) t1(:) ] ) \ unv(t1); +% +% % correct the phase of the second data set to match the first +% % (i.e. shift the k-space grids to match) +% B = diag( exp( j*y1(2)*((1:size(B,1))-1) ) ) * B; + + % calculate the scalar phase difference between the sets ... + if isempty(phz) + if (0), + P = zeros(size(A)); + % [JRP] why does previous definition of "tt" above use a threshold of 0.01*max? + tt = find(A(:)>0.1*max(A(:))); + P(tt) = A(tt).*conj(B(tt))./abs(A(tt).*conj(A(tt))); + indx1 = round((size(P,1) - 10)/2) + (1:10); if ( sum(indx1<=0) > 0 ) indx1 = 1:size(P,1); end; + x = mean(vec(P( indx1, (end-10)/2 +(1:10), : ) )); + else, + % [JRP] based on "Local Phase Correction" of Feiweier + x = sum(vec(A.*conj(B))); + end; + else, + x = phz(2); + end; + + % and apply a scalar correction as well. + B = B.*exp(j*angle(x)); + + if nargout > 1, + y_out(:,cnt) = [ y2(2); exp(j*angle(x)) ]; + if (verbose) + fprintf(' p = %f %f + j %f\n',y_out(1,cnt), ... + real(y_out(2,cnt)),imag(y_out(2,cnt)) ); + end; + end; + + % add the two sets together, and convert back to k-space for output. + if sum(strcmp(mode,'nocombo')) + c_out = B; + else, + c_out = (A+B)/2; + end; + if sum(strcmp(mode,'nofft')), + else, + c_out = ifftshift(fft2(ifftshift(c_out,1:2)),1:2); + end; + +end; + + +c_out = reshape( c_out, size(a) ); +sz = size(c_out); +if ( (nargout > 1) && length(sz)>2), + y_out = reshape( y_out, [ 2 sz(3:end) ] ); +end; + +% return output +if nargout > 0 + varargout{1}= c_out; +end + +if nargout > 1 + varargout{2}= y_out; +end + +if nargout > 2 + varargout{3}= y2; +end + +if nargout > 3 + varargout{4}= x; +end diff --git a/readnd.m b/readnd.m new file mode 100755 index 0000000..4730333 --- /dev/null +++ b/readnd.m @@ -0,0 +1,81 @@ +function [A,meta] = readnd(fname); +% +% READND - read a binary N-dimensional data file +% +% The function reads N-dimensional data saved by either the C or Matlab +% form of savend. +% +% See Also SAVEND +% + +% +% Copyright 2004-2008 W. Scott Hoge (wsh032580 at proton dot me) +% +% Licensed under the terms of the MIT License +% (https://opensource.org/licenses/MIT) + + +fid = fopen(fname,'rb'); +if fid <0, error(['Couldn''t open ' fname]); end; + +fseek(fid,0,'eof'); +maxfln = ftell(fid); +fseek(fid,0,'bof'); + +fln = fread(fid,1,'integer*4'); +hdr = fscanf(fid,'%c',4); +if ~strcmp(hdr,'nddf') + warning(['This does not appear to be a .nd file. The file type field is ' ... + 'not ''nddf'' ']); + return; +end; + +szln = fread(fid,1,'integer*4'); + sz = fread(fid,szln,'integer*4'); + hdr = fscanf(fid,'%c',4); + +if ( strcmp(hdr(4),'c') ), + cmplx = 2; +else + cmplx = 1; +end; + +if strcmp( hdr(1:3), 'dbl' ), + data = fread(fid,cmplx*prod(sz),'double'); +elseif strcmp( hdr(1:3), 'flt' ), + data = fread(fid,cmplx*prod(sz),'float'); +elseif strcmp( hdr(1:3), 'int' ), + data = fread(fid,cmplx*prod(sz),'int16'); +elseif strcmp( hdr(1:3), 'cha' ), + data = fread(fid,cmplx*prod(sz),'uint8'); +end; +fprintf('format: %s\n',hdr); + +if ( strcmp(hdr(4),'c') ), + data = data(1:2:length(data)) + j * data(2:2:length(data)); +end; +if ( prod(size(data)) ~= prod(sz) ), + fprintf('declared: %10d\n',prod(sz)); + fprintf(' read: %10d\n',length(data)); + warning('Error: size of read data doesn''t match declared size'); +else + if length(sz)==1, sz = size(data)'; end; + A = reshape( data, sz' ); +end; + +if ( ftell(fid) ~= maxfln ), + + metaln = fread(fid,1,'integer*4'); + hdr = fscanf(fid,'%c',4); + + if strcmp( hdr, 'meta' ), + meta = fread(fid,metaln,'char'); + else, + warning('Warning: number of bytes read from file is suspicious'); + disp([ ftell(fid) fln ]); + keyboard; + end; +end; + +fclose(fid); + diff --git a/recongrappa.m b/recongrappa.m new file mode 100755 index 0000000..d4e77d1 --- /dev/null +++ b/recongrappa.m @@ -0,0 +1,242 @@ +function [F,I,mask] = recongrappa( varargin ); +% [F,I,mask ] = recongrappa(Wk, Sk, Y, [opt args]); +% +% opt args: +% 'v', {0,1} - verbosity off/on +% 'kernel', string - grappa kernel size, x by y. e.g. '2x5', '4x1' +% 'N', (xy)-by-L matrix - grappa reconstruction parameters +% 'acs', array of indices - index locations to use for ACS lines +% 'dk', delta-k - distance between phase encode lines used by +% the GRAPPA kernel. default: 2 +% +% This is an implementation of +% "Generalized autocalibrating partially parallel acquisitions" +% by M. A. Griswold, P. M. Jakob, et. al.. +% Mag. Reson. Med. 47(6):1202-1210. Jun 2002 + +% Copyright 2004-2007 W. Scott Hoge (wsh032580 at proton dot me) +% +% Licensed under the terms of the MIT License +% (https://opensource.org/licenses/MIT) + +% +% uncombined images are generated for each coil in the array, by +% filling in k-space lines. +% +% +% GRAPPA: data from all coils used to patch data in one coil +% +% coil 1 o * o * - * o * +% coil 2 o * o * - * o * +% coil 3 o * o * - * o * +% coil 4 o * o * x * o * +% +% *: acquired line, o: unacquired line, -: auto-callibration line +% x: reconstructed line +% +% S_j (k_y - m\Delta k_y ) = \sum_{l=1}^L \sum_{b=0}^{N_b-1} +% n(j,b,l,m) S_l(k_y - b A \Delta k_y) +% +% in a variable density sampling scheme, the center of k-space is fully +% sampled and can be used to determine the linear fit parameters. +% +% A - acceleration factor +% N_b - number of blocks used in the reconstruction +% +% N_b = 1 ----> GRAPPA = VD-AUTO-SMASH + +global prnt + +Wk = varargin{1}; +s = varargin{2}; +Y = varargin{3}; + +acs = []; N = []; verbose=0; kernel = '2x3'; dk = 2; +prnt = 0; % set to '1' to output some debugging information +Nbias = []; +chi = 1e-8; + +vararg = varargin(4:end); +for cnt=1:2:length(vararg), + if strcmp( vararg{cnt}, 'v' ), + verbose = cell2mat(vararg(cnt+1)); + elseif strcmp( vararg{cnt}, 'N' ), + N = vararg{cnt+1}; + elseif strcmp( vararg{cnt}, 'Nbias' ), + Nbias = vararg{cnt+1}; + elseif strcmp( vararg{cnt}, 'kernel' ), + kernel = vararg{cnt+1}; + elseif strcmp( vararg{cnt}, 'dk' ), + dk = vararg{cnt+1}; + elseif strcmp( vararg{cnt}, 'chi' ), + chi = vararg{cnt+1}; + elseif strcmp( vararg{cnt}, 'acs' ), + acs = vararg{cnt+1}; + elseif (strcmp( vararg{cnt}, 'report' ) | strcmp( vararg{cnt}, 'r' )), + prnt = vararg{cnt+1}; + end; +end; + +if isempty(acs), + d = diff(Y); + acs = Y(find(d == 1)); + % acs = acs(2:length(acs)); +end; + +if length(size(Wk)) == 3, + [Wm,Wn,Wc] = size(Wk); +else, + Wm = Wk(1); Wn = Wk(2); Wc = Wk(3); +end; + +%% zero-pad the k-space data +Sk = zeros( Wm, Wn, Wc ); +Sk(Y,:,:) = s; + +% set the kernel spacings based on 'kernel' string +nky = str2double(kernel(1)); % should be even +if (nky==1), + indx0 = 1; +else, + indx0 = floor( [-(nky-1):2:(nky-1)] * dk/2 ); +end; +% if (nky == '2'), indx0 = [-1 1]; +% elseif (nky == '6'), indx0 = [ -5 -3 -1 1 3 5]; +% else % (nky == '4'), indx0 = [ -3 -1 1 3]; +% end; + +nkx = str2double(kernel(3)); % should be odd +indx3 = ceil((0-nkx)/2) -1 + (1:nkx); % [-2:2]; + +rptupd( sprintf(['kernel size: ' num2str(length(indx0)) 'x' num2str(length(indx3)) ';']) ); +rptupd( sprintf([' indx0 = [' sprintf(' %d',indx0) ']; ']) ); +rptupd( sprintf([' indx3 = [' sprintf(' %d',indx3) '];\n']) ); + +stime = clock; + +plist = zeros( length(acs), 1 ); + +for cnt2 = 1:length(acs); + %% check if the GRAPPA pattern... + indx = acs(cnt2) + indx0; + + %% can be accomodated by the sampling pattern + tmp = find( Y(:)*ones(1,length(indx)) == ones(length(Y),1)*indx ); + plist(cnt2) = ( length(tmp) == length(indx) ); +end; +%% use only those ACS lines that fit the GRAPPA kernel +acs = vec( acs(logical(plist)) ).'; +rptupd([ ' ACS lines:' sprintf(' %d ',acs) '\n' ]); + +rptupd('processing coil: '); +for l=1:size(s,3), + rptupd([' ' num2str(l)]); + %% determine the k-space filling coefficients for each coil: + + %%% setup the system matrix + A2 = zeros( size(s,2), length(indx3)*length(indx0)*size(s,3) ); + + if size(N,2) < l, % if coefficients are not supplied + %%% Griswolds way: + % tic; + % A2 = zeros( size(s,2), length(indx3)*length(indx)*size(s,3) );% 20*size(s,3) ); + % for x0=1:size(s,2), + % indx2 = x0 + indx3; + % indx2( indx2 < 1 ) = indx2( indx2 < 1 ) + size(s,2); + % indx2( indx2 > size(s,2) ) = indx2( indx2 > size(s,2) ) - size(s,2); + % + % A2(x0,:) = vec( permute(squeeze( Sk(indx,indx2,:)),[2 3 1 ]) ).'; + % end; + % toc + + %%% My way: (heh, 8x faster) + % tic; + A = zeros( length(acs)*size(s,2), length(indx3)*length(indx0)*size(s,3) ); + A2 = zeros( size(s,2), length(indx3)*length(indx0)*size(s,3) ); + if (l==1), rptupd(['\n size(A) = ' num2str(size(A)) '\n']), end; + + for cnt2=1:length(acs), + indx = acs(cnt2) + indx0; + for cnt=1:length(indx3), + y0 = mod( indx3(cnt) + [1:size(Sk,2)] , size(Sk,2) ); + y0( y0 == 0 ) = size(Sk,2); + + A( size(s,2)*(cnt2-1) + (1:size(s,2)), ... + cnt:length(indx3):size(A,2) ) = ... + reshape( permute(squeeze( Sk(indx,y0,:) ),[ 2 3 1 ]), ... + size(Sk,2), size(Sk,3)*length(indx) ); + end; + end; + % toc + + %%% setup the objective vector + b = vec( Sk( acs, :, l ).' ); + + %%% find the coefficients + % n = A \ b; % pinv( A, norm(A)*0.01 ) * b; + + if (size(Nbias,1)==0), % isempty('Nbias'), + % n = cgsolv( A'*A, A'*b, zeros(size(A,2),1), size(A,2) ); + [ n tt ] = bicg( A'*A + chi*eye(size(A,2)), A'*b ); + else, + n = cgsolv( A'*A, A'*b, Nbias(:,l), size(A,2)/4 ); + end; + + N(:,l) = n; % store them + if verbose, pltcmplx( A*n, b ); keyboard; end; + end; + + % extract the coefficients for this coil + n = N(:,l); + + %% now go recon the missing lines of k-space: + mss = zeros(Wm,1); % set the missing lines index vector + mss(Y) = 1; + + for cnt0=1:length(mss), + if (mss(cnt0) == 1); continue; end; + + indx = cnt0 + indx0; + if ( (min(indx) < 1) | (max(indx) > size(Sk,1))); continue; end; + + if ( sum(sum( Y(:)*ones(size(indx)) == ones(size(Y(:)))*indx )) < length(indx) ), + continue; + end; + + % for x0=1:size(s,2), + % indx2 = x0 ; % + [-2:2]; + % indx2( indx2 < 1 ) = indx2( indx2 < 1 ) + size(s,2); + % indx2( indx2 > size(s,2) ) = indx2( indx2 > size(s,2) ) - size(s,2); + % + % end; + for cnt=1:length(indx3), + y0 = mod( indx3(cnt) + [1:size(Sk,2)] , size(Sk,2) ); + y0( y0 == 0 ) = size(Sk,2); + + A2( (1:size(s,2)), cnt:length(indx3):size(A2,2) ) = ... + reshape( permute(squeeze( Sk(indx,y0,:) ),[ 2 3 1 ]), ... + size(Sk,2), size(Sk,3)*length(indx) ); + end; + Sk( cnt0, :, l ) = A2 * n; + % figure(1); imagesc( log10(abs(Sk(:,:,l)) + 1e-1) ); pause(0.5); + end; + +end; +rptupd('\n'); +rptupd( sprintf( 'Elapsed time: %8.5g seconds.\n', etime(clock,stime) ) ); + +F = Sk; +I = sqrt( sum(abs(ifft2(Sk)).^2,3) ); +mask = N; + +clear global prnt + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +function rptupd( str ) +global prnt + +if (prnt) + fprintf( str ); +end; + +return; diff --git a/runthis.m b/runthis.m new file mode 100644 index 0000000..776504b --- /dev/null +++ b/runthis.m @@ -0,0 +1,59 @@ +addpath('data'); +addpath('tensor'); + +% load the calibration data +acs1 = readnd('dpg_acs1.nd'); % RO+ lead data +acs2 = readnd('dpg_acs2.nd'); % RO- lead data + +% interleave to form the RO+ image +A = zeros(size(acs1)); +A(:,1:2:end,:) = acs1(:,1:2:end,:); +A(:,2:2:end,:) = acs2(:,2:2:end,:); +A = permute(A,[2 1 3]); + +% interleave to form the RO- image +B = zeros(size(acs1)); +B(:,1:2:end,:) = acs2(:,1:2:end,:); +B(:,2:2:end,:) = acs1(:,2:2:end,:); +B = permute(B,[2 1 3]); + +% combine coherently, to form the PLACE image +% the lines below calls a MEX function from the Fast Imaging Library +% C = ifi(pos_neg_add( fif(A),fif(B) ))/2; +C = ifi(phzshift( fif(A), fif(B), {'nofft'})); + +% if the FIL function is not available, you can replace the above line(s) with +% the call below, to read in the result from a file. +% C = readnd('dpg_C.nd'); + +% calibrate the DPG coefficients +kin{1} = A; +kin{2} = B; +kin{3} = C; +[~,~,N]=dpg_cal( size(kin{3}), kin, 1:size(kin{3},1), 'kernel','2x5','dks',2); + +% read in the raw EPI data (R=2) +k = readnd('dpg_k.nd'); + +% reconstruct the data using DPG +Fin{1} = zeros([60 96 32]); Fin{1}(2:4:end,:,:) = permute(k(:,1:4:end,:),[2 1 3]); +Fin{2} = zeros([60 96 32]); Fin{2}(4:4:end,:,:) = permute(k(:,3:4:end,:),[2 1 3]); +Fdpg = dpg_recon( Fin, N, 2, '2x5'); + +% compare with an LPC+GRAPPA recon: +[~,~,Ng]=recongrappa(size(kin{3}),kin{3},vec(1:30),'kernel','2x5','dks',[2;4]); + +% compute the standard Nyquist ghost correction coefficients: +s = readnd('dpg_k_pcref.nd'); +S0 = fif(mean(s(:,[1 3],:),2)); +S1 = fif(mean(s(:,[ 2 ],:),2)); +for cnt=1:size(S0,3); [~,y(:,cnt)]=phzshift( S1(:,:,cnt).', S0(:,:,cnt).', {'nofft'}); end; +% y = readnd('y.nd'); % derived from dpg_k_pcref.nd + +k_gc = phzapply( permute(k(:,1:2:end,:),[2 1 3]), y); +Flpc = recongrappa([60 96 32],k_gc,vec(1:2:60),'kernel','2x5','dks',2,'N',Ng); + +imagesc(sqrt(sum(abs([ flipdim(fif(Flpc),1); flipdim(fif(Fdpg),1) ]).^2,3))); +axis('image'); +colormap(gray(256)) +title([ 'top: 3-nav-line correction. bottom: DPG correction' ]); diff --git a/runthis2.m b/runthis2.m new file mode 100644 index 0000000..ce9f8ba --- /dev/null +++ b/runthis2.m @@ -0,0 +1,32 @@ +% an example of DPG w/o PLACE calibration data +addpath('data'); +addpath('tensor'); + +acs2 = readnd('dpg_acs2.nd'); % RO- lead data +y2 = readnd('y_acs2.nd'); % ghost correction coefficients + +% ghost-corrected ACS data +c2_gc = permute( phzapply( permute(acs2,[2 1 3]), y2),[2 1 3]); + +% generate the GRAPPA coefficients +[~,~,Ng2]=grappa(size(c2_gc),c2_gc,vec(1:30),'2x5',2); + +% synthesize the RO+ and RO- source data from the ACS data using GRAPPA +acs2n = grappa(size(c2_gc),acs2(:,1:2:end,:),vec(1:2:30),'2x5',2,Ng2); +acs2p = grappa(size(c2_gc),acs2(:,2:2:end,:),vec(2:2:30),'2x5',2,Ng2); +acs2c = ifi(pos_neg_add( fif(acs2n),fif(acs2p) ))/2; + +% calibrate DPG +kin{1} = permute(acs2p,[2 1 3]); % RO+ in the first cell +kin{2} = permute(acs2n,[2 1 3]); % RO- in the second cell +kin{3} = permute(acs2c,[2 1 3]); +[~,~,N2]=dpg_cal( size(kin{3}), kin, 1:size(kin{3},1), 'kernel','2x5','dks',2); + + +% reconstruct the accelerated data using DPG +k = readnd('dpg_k.nd'); + +Fin{1} = zeros([60 96 32]); Fin{1}(2:4:end,:,:) = permute(k(:,1:4:end,:),[2 1 3]); +Fin{2} = zeros([60 96 32]); Fin{2}(4:4:end,:,:) = permute(k(:,3:4:end,:),[2 1 3]); +Fdpg2 = dpg_recon( Fin, N2, 2, 2); + diff --git a/tensor/tmult.m b/tensor/tmult.m new file mode 100755 index 0000000..da2be49 --- /dev/null +++ b/tensor/tmult.m @@ -0,0 +1,68 @@ +function result = tmult(A,U,d) +% +% TMULT - tensor multiply (S = A x_i U) of A by U along dimension i +% +% usage: S = tmult( A, U, i ) + +% +% Copyright 2008 W. Scott Hoge (wsh032580 at proton dot me) +% +% Licensed under the terms of the MIT License +% (https://opensource.org/licenses/MIT) + +sz = size(A); +tmp = U * local_unfold(A,d); + +sz(d) = size(U,1); +N = length(sz); + +result = permute( reshape( tmp, sz( [ d:-1:1 N:-1:(d+1) ] ) ), ... + [ d:-1:1 N:-1:(d+1) ] ); + +%%%% the following was used with CFW's permute version of the unfolding +% +% result = permute( ... +% reshape( tmp, sz([ d:N 1:(d-1) ]) ), ... +% [ (N-d+2):N 1:(N-d+1) ] ); + +function result = local_unfold(A,d) +% +% UNFOLD - reduces the dimension of a tensor by "unfolding" along one direction +% (performs unfolding as described by deLathauwer in SIMAX 21(4):1253. +% +% Example: given a 3D tensor, A, +% +% unfold(A,2) => I1 +% +----+ +----+ +----+ +% I2 | | | | | | +% | | | | | | +% +----+ +----+ +----+ +% \ ____|____ / +% I3 +% +% for a 3D tensor, +% +% unfold(A,1) = [ A(:,1,:) A(:,2,:) ... A(:,n2,:) ], +% unfold(A,2) = ( A(:,:,1)' A(:,:,2)' ... A(:,:,n3)' ), +% unfold(A,3) = ( A(1,:,:)' A(2,:,:)' ... A(n1,:,:)' ) +% +% To fold the matrix back (i.e. undo the unfold), one *must* know the +% size of the final matrix and use the same permutation as the unfolding. +% An example: +% sz = size(A); +% A == permute( reshape( unfold(A,d) , sz([ d:-1:1 N:-1:(d+1) ]) ), ... +% [ d:-1:1 N:-1:(d+1) ] ); +% + + +sz = size(A); +N = length(sz); +if (d > length(sz)), return; end; + +result = reshape( permute( A, [ d:-1:1 N:-1:(d+1) ]), ... + [ sz(d) prod(sz([1:(d-1) (d+1):N])) ] ); + +% unfold(A,1) = reshape( permute( A, [ 1 3 2 ]), [sz(1) prod(sz(3:2)) ] ) +% unfold(A,2) = reshape( permute( A, [ 2 1 3 ]), [sz(2) prod(sz([1 3])) ] ) +% unfold(A,3) = reshape( permute( A, [ 3 2 1 ]), [sz(3) prod(sz([1 2])) ] ) + diff --git a/tensor/trefold.m b/tensor/trefold.m new file mode 100644 index 0000000..9c36d43 --- /dev/null +++ b/tensor/trefold.m @@ -0,0 +1,50 @@ +function result = trefold(tmp,sz,d) +% +% TREFOLD - tensor re-fold +% expands the dimension of a tensor by "refolding" along one direction +% (un-does the unfolding as described by deLathauwer in SIMAX 21(4):1253) +% +% Usage: A = trefold(unfA,sz,d) +% +% Example: given a 3D tensor, A, +% +% unfold(A,2) => I1 +% +----+ +----+ +----+ +% I2 | | | | | | +% | | | | | | +% +----+ +----+ +----+ +% \ ____|____ / +% I3 +% +% for a 3D tensor, +% +% unfold(A,1) = [ A(:,1,:) A(:,2,:) ... A(:,n2,:) ], +% unfold(A,2) = ( A(:,:,1)' A(:,:,2)' ... A(:,:,n3)' ), +% unfold(A,3) = ( A(1,:,:)' A(2,:,:)' ... A(n1,:,:)' ) +% +% To fold the matrix back (i.e. undo the unfold), one *must* know the +% size of the final matrix and use the same permutation as the unfolding. +% An example: +% sz = size(A); +% A == permute( reshape( unfold(A,d) , sz([ d:-1:1 N:-1:(d+1) ]) ), ... +% [ d:-1:1 N:-1:(d+1) ] ); +% + +% +% Copyright 2008 W. Scott Hoge (wsh032580 at proton dot me) +% +% Licensed under the terms of the MIT License +% (https://opensource.org/licenses/MIT) + +% sz = size(A); +N = length(sz); +if (d > length(sz)), result = A; return; end; + +result = permute( reshape( tmp, sz( [ d:-1:1 N:-1:(d+1) ] ) ), ... + [ d:-1:1 N:-1:(d+1) ] ); + + +% unfold(A,1) = reshape( permute( A, [ 1 3 2 ]), [sz(1) prod(sz(3:2)) ] ) +% unfold(A,2) = reshape( permute( A, [ 2 1 3 ]), [sz(2) prod(sz([1 3])) ] ) +% unfold(A,3) = reshape( permute( A, [ 3 2 1 ]), [sz(3) prod(sz([1 2])) ] ) + diff --git a/tensor/tunfold.m b/tensor/tunfold.m new file mode 100644 index 0000000..dc41a91 --- /dev/null +++ b/tensor/tunfold.m @@ -0,0 +1,45 @@ +function result = tunfold(A,d) +% +% TUNFOLD - tensor unfold - reduces the dimension of a tensor by "unfolding" along one direction +% (performs unfolding as described by deLathauwer in SIMAX 21(4):1253.) +% +% Example: given a 3D tensor, A, +% +% unfold(A,2) => I1 +% +----+ +----+ +----+ +% I2 | | | | | | +% | | | | | | +% +----+ +----+ +----+ +% \ ____|____ / +% I3 +% +% for a 3D tensor, +% +% unfold(A,1) = [ A(:,1,:) A(:,2,:) ... A(:,n2,:) ], +% unfold(A,2) = ( A(:,:,1)' A(:,:,2)' ... A(:,:,n3)' ), +% unfold(A,3) = ( A(1,:,:)' A(2,:,:)' ... A(n1,:,:)' ) +% +% To fold the matrix back (i.e. undo the unfold), one *must* know the +% size of the final matrix and use the same permutation as the unfolding. +% An example: +% sz = size(A); +% A == permute( reshape( unfold(A,d) , sz([ d:-1:1 N:-1:(d+1) ]) ), ... +% [ d:-1:1 N:-1:(d+1) ] ); +% + +% Copyright 2008 W. Scott Hoge (wsh032580 at proton dot me) +% +% Licensed under the terms of the MIT License +% (https://opensource.org/licenses/MIT) + +sz = size(A); +N = length(sz); +if (d > length(sz)), result = A; return; end; + +result = reshape( permute( A, [ d:-1:1 N:-1:(d+1) ]), ... + [ sz(d) prod(sz([1:(d-1) (d+1):N])) ] ); + +% unfold(A,1) = reshape( permute( A, [ 1 3 2 ]), [sz(1) prod(sz(3:2)) ] ) +% unfold(A,2) = reshape( permute( A, [ 2 1 3 ]), [sz(2) prod(sz([1 3])) ] ) +% unfold(A,3) = reshape( permute( A, [ 3 2 1 ]), [sz(3) prod(sz([1 2])) ] ) + diff --git a/vec.m b/vec.m new file mode 100755 index 0000000..3c748e5 --- /dev/null +++ b/vec.m @@ -0,0 +1,2 @@ +function result = vec( x ); +result = x(:); \ No newline at end of file